Проект подготовлен к общественно-профессиональному обсуждению

Государственная (итоговая) аттестация 2013 года (в новой форме) по ХИМИИ обучающихся, освоивших основные общеобразовательные программы

Демонстрационный вариант

контрольных измерительных материалов для проведения в 2013 году государственной (итоговой) аттестации (в новой форме) по ХИМИИ обучающихся, освоивших основные общеобразовательные программы основного общего образования

подготовлен Федеральным государственным бюджетным научным учреждением «ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПЕДАГОГИЧЕСКИХ ИЗМЕРЕНИЙ»

Химия, 9 класс

Демонстрационный вариант

контрольных измерительных материалов для проведения в 2013 году государственной (итоговой) аттестации (в новой форме) по ХИМИИ обучающихся, освоивших основные общеобразовательные программы основного общего образования

Пояснения к демонстрационному варианту экзаменационной работы

При ознакомлении с демонстрационным вариантом 2013 г. следует иметь в виду, что задания, включённые в демонстрационный вариант, не отражают всех элементов содержания, которые будут проверяться с помощью вариантов КИМ в 2013 г. Полный перечень элементов содержания, которые могут контролироваться на экзамене 2013 г., приведён в кодификаторе элементов содержания экзаменационной работы для выпускников IX классов общеобразовательных учреждений по химии, размещённом на сайте: www.fipi.ru.

Демонстрационный вариант предназначен для того, чтобы дать возможность любому участнику экзамена и широкой общественности составить представление о структуре экзаменационной работы, числе и форме заданий, а также об их уровне сложности. Приведённые критерии оценивания выполнения заданий с развёрнутым ответом, включённые в демонстрационный вариант экзаменационной работы, позволят составить представление о требованиях к полноте и правильности записи развёрнутого ответа.

Эти сведения дают выпускникам возможность выработать стратегию подготовки к сдаче экзамена по химии.

3

Демонстрационный вариант 2013 года

Инструкция по выполнению работы

На выполнение работы отводится 2 часа (120 минут). Работа состоит из 3 частей, включающих в себя 22 задания.

Часть 1 содержит 15 заданий (A1–A15). К каждому заданию даётся четыре варианта ответа, из которых только один верный. При выполнении задания части 1 обведите кружком номер выбранного ответа в экзаменационной работе. Если Вы обвели не тот номер, то зачеркните обведённый номер крестиком, а затем обведите номер нового ответа.

Часть 2 состоит из 4 заданий (B1–B4), на которые нужно дать краткий ответ в виде набора цифр. Для заданий части 2 ответ записывается в экзаменационной работе в отведённом для этого месте. В случае записи неверного ответа зачеркните его и запишите рядом новый.

Часть 3 включает в себя 3 задания (С1–С3), выполнение которых предполагает написание полного, развёрнутого ответа, включающего необходимые уравнения реакций и расчёты. Ответы на задания части 3 записываются на отдельном листе.

При выполнении работы Вы можете пользоваться Периодической системой химических элементов Д.И. Менделеева, таблицей растворимости солей, кислот и оснований в воде, электрохимическим рядом напряжений металлов и непрограммируемым калькулятором.

При выполнении заданий Вы можете пользоваться черновиком. Обращаем Ваше внимание на то, что записи в черновике не будут учитываться при оценивании работы.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, Вы сможете вернуться к пропущенным заданиям.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Часть 1

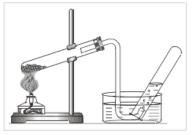
При выполнении заданий с выбором ответа (A1–A15) обведите кружком номер правильного ответа в экзаменационной работе.

А1 На приведённом рисунке

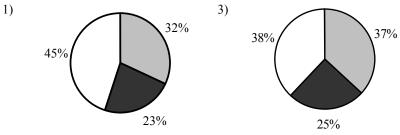
изображена модель атома

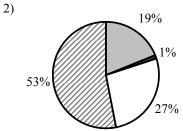
- хлора
- 2) азота
- 3) магния
- 4) фтора
- **A2** В каком ряду химических элементов усиливаются неметаллические свойства соответствующих им простых веществ?
 - 1) алюминий \rightarrow фосфор \rightarrow хлор
 - 2) ϕ тор \rightarrow азот \rightarrow углерод
 - 3) хлор \rightarrow бром \rightarrow иод
 - 4) кремний \rightarrow сера \rightarrow фосфор
- АЗ Какой вид химической связи в молекуле фтора?
 - 1) ионная
 - 2) ковалентная полярная
 - 3) ковалентная неполярная
 - 4) металлическая
- **А4** В каком соединении степень окисления азота равна +3?
 - 1) Na₃N
 - 2) NH₃
 - 3) NH₄Cl
 - 4) HNO₂
- **А5** Вещества, формулы которых ZnO и Na₂SO₄, являются соответственно
 - 1) основным оксидом и кислотой
 - 2) амфотерным гидроксидом и солью
 - 3) амфотерным оксидом и солью
 - 4) основным оксидом и основанием

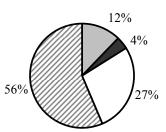
- Признаком протекания химической реакции между оксидом меди и водородом является
 - 1) появление запаха
 - 2) изменение цвета
 - 3) выпадение осадка
 - 4) выделение газа
- Одинаковое число молей катионов и анионов образуется при полной диссоциации в водном растворе 1 моль
 - 1) H₂SO₄
- 2) $(NH_4)_2S$
- 3) BaCl₂
- 4) CuSO₄


5

- Газ выделяется при взаимодействии
 - 1) MgCl₂ и Ba(NO₃)₂
 - 2) Na₂CO₃ и CaCl₂
 - 3) NH₄Cl и NaOH
 - 4) CuSO₄ и KOH
- Не реагируют друг с другом
 - 1) хлор и водород
 - 2) кислород и кальций
 - 3) азот и вода
 - 4) железо и сера
- Оксид цинка реагирует с каждым из двух веществ: A10
 - 1) Na₂O и H₂O 2) SiO₂ и Ag
- 3) NaOH и HCl 4) HNO₃ и O₂


- В реакцию с соляной кислотой вступает
 - 1) нитрат серебра
 - 2) нитрат бария
 - 3) серебро
 - 4) оксид кремния
- Среди веществ: NaCl, Na₂S, Na₂SO₄ в реакцию с раствором Cu(NO₃)₂ вступает(-ют)
 - 1) только Na₂S
 - 2) NaCl и Na₂S
 - 3) Na₂S и Na₂SO₄
 - 4) NaCl и Na₂SO₄
 - © 2013 Федеральная служба по надзору в сфере образования и науки Российской Федерации


Химия. 9 класс 6


- A13 Верны ли суждения о безопасном обращении с химическими веществами?
 - А. Разбитый ртутный термометр и вытекшую из него ртуть следует выбросить в мусорное ведро.
 - Б. Красками, содержащими соединения свинца, не рекомендуется покрывать детские игрушки и посуду.
 - 1) верно только А
 - 2) верно только Б
 - 3) верны оба суждения
 - 4) оба суждения неверны
- В приборе, изображённом на рисунке, получают A14
 - 1) хлор
 - 2) аммиак
 - 3) кислород
 - 4) хлороводород

A15 На какой диаграмме распределение массовых долей элементов отвечает количественному составу фосфата аммония?

Часть 2

При выполнении заданий B1, B2 из предложенного перечня ответов выберите два правильных и обведите их номера. Цифры выбранных ответов запишите в указанном месте без дополнительных символов.

- **B1** В ряду химических элементов: $Al \rightarrow Si \rightarrow P$ происходит увеличение (усиление)
 - 1) числа протонов в ядрах атомов
 - 2) числа заполняемых электронных слоёв в атомах
 - 3) радиуса атомов
 - 4) металлических свойств
 - 5) степени окисления в высших оксидах

- В2 Для этанола верны следующие утверждения:
 - 1) в состав молекулы входит один атом углерода
 - 2) атомы углерода в молекуле соединены двойной связью
 - 3) является жидкостью (н.у.), хорошо растворимой в воде
 - 4) вступает в реакцию со щелочными металлами
 - 5) сгорает с образованием угарного газа и водорода

Ответ:	Ответ:		
--------	--------	--	--

При выполнении заданий ВЗ, В4 к каждому элементу первого столбца подберите соответствующий элемент из второго столбца. Выбранные цифры запишите под соответствующими буквами таблицы. Цифры в ответе могут повторяться.

Установите соответствие между схемой химической реакции и веществомвосстановителем в ней.

СХЕМА РЕАКЦИИ

ВОССТАНОВИТЕЛЬ

- A) $HCl + MnO_2 \rightarrow MnCl_2 + Cl_2 + H_2O$
- 1) MnO₂
- 2) HCl

B) $HCl + Al \rightarrow AlCl_3 + H_2$

- 3) HClO₃
- 4) H₂S5) Al
- 3

Отрет.	A	Б	В
Ответ.			

© 2013 Федеральная служба по надзору в сфере образования и науки Российской Федерации

Установите соответствие между названием вещества и реагентами, с которыми это вещество может взаимодействовать.

НАЗВАНИЕ ВЕЩЕСТВА

РЕАГЕНТЫ

A) cepa

CO₂, Na₂SO₄(p-p)
HCl, NaOH(p-p)

Б) оксид цинка

3) $AgNO_3(p-p)$, KOH(p-p)

В) хлорид алюминия

4) H₂SO₄(конц.), O₂

Отрет	A	Б	В
Other.			

Часть 3

Для ответов на задания C1–C3 используйте отдельный лист. Запишите сначала номер задания (C1, C2 или C3), а затем развёрнутый ответ к нему. Ответы записывайте чётко и разборчиво.

С1 Дана схема превращений:

$$CaO \rightarrow X \xrightarrow{Na_2CO_3} CaCO_3 \rightarrow CO_2$$

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.

- С2 170 г раствора нитрата серебра смешали с избытком раствора хлорида натрия. Выпал осадок массой 8,61 г. Вычислите массовую долю соли в растворе нитрата серебра.
- СЗ Для определения качественного состава неизвестного кристаллического вещества белого цвета к его раствору добавили раствор гидроксида калия. При этом образовался осадок. К другой части раствора исследуемого вещества добавили раствор нитрата бария. Наблюдали образование нерастворимого в кислотах белого осадка.

Известно, что катион металла, который содержится в данном соединении, входит также в состав хлорофилла, а сам металл ранее применялся в фотографии для получения вспышки.

Определите состав и запишите название исходного вещества. Запишите два уравнения реакций, которые были проведены в процессе определения качественного состава неизвестного вещества.

© 2013 Федеральная служба по надзору в сфере образования и науки Российской Федерации

Система оценивания экзаменационной работы по химии

Части 1 и 2

Верное выполнение каждого задания части 1 (А1-А15) оценивается 1 баллом. За выполнение задания с выбором ответа выставляется 1 балл при условии, что указан только один номер правильного ответа. Если отмечены два и более ответов, в том числе правильный, то ответ не засчитывается.

В части 2 задание с кратким ответом считается выполненным верно, если в заданиях В1-В4 правильно указана последовательность цифр. За полный правильный ответ на каждое из заданий В1-В4 ставится 2 балла; если допущена одна ошибка, то ответ оценивается в 1 балл. Если допущены две и более ошибки или ответа нет, то выставляется 0 баллов.

№ задания	Ответ	№ задания	Ответ
A1	4	A11	1
A2	1	A12	1
A3	3	A13	1
A4	4	A14	3
A5	3	A15	4
A6	2	B1	15
A7	4	B2	34
A8	3	В3	245
A9	3	B4	423
A10	3		

Часть 3

Критерии оценивания заданий с развёрнутым ответом

C1 Дана схема превращений:

$$CaO \rightarrow X \xrightarrow{Na_2CO_3} CaCO_3 \rightarrow CO_2$$

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.

Элементы ответа

(допускаются иные формулировки ответа, не искажающие его смысла)

Написаны уравнения реакций, соответствующие схеме превращений:

1)
$$CaO + 2HCl = CaCl_2 + H_2O$$
 (или $CaO + H_2O = Ca(OH)_2$)

2)
$$CaCl_2 + Na_2CO_3 = CaCO_3 \downarrow + 2NaCl$$

3)
$$CaCO_3 \xrightarrow{t^{\circ}C} CaO + CO_2 \uparrow$$

Составлено сокращённое ионное уравнение для второго превращения:

4)
$$Ca^{2+} + CO_3^{2-} = CaCO_3 \downarrow$$

Критерии оценивания	Баллы
Ответ правильный и полный, содержит все названные элементы	4
Правильно записаны 3 уравнения реакций	3
Правильно записаны 2 уравнения реакций	2
Правильно записано 1 уравнение реакции	1
Все элементы ответа записаны неверно	0
Максимальный балл	4

C3

11

C2

170 г раствора нитрата серебра смешали с избытком раствора хлорида натрия. Выпал осадок массой 8,61 г. Вычислите массовую долю соли в растворе нитрата серебра.

Элементы ответа

(допускаются иные формулировки ответа, не искажающие его смысла)

1) Составлено уравнение реакции:

 $AgNO_3 + NaCl = AgCl \downarrow + NaNO_3$

2) Рассчитаны количество вещества и масса нитрата серебра, содержащегося в исходном растворе:

по уравнению реакции $n(AgNO_3) = n(AgCl) = m(AgCl) / M(AgCl) = 8,61:143,5 = 0,06 моль$

 $m(AgNO_3) = n(AgNO_3) \cdot M(AgNO_3) = 0.06 \cdot 170 = 10.2 \Gamma$

3) Вычислена массовая доля нитрата серебра в исходном растворе: $\omega(AgNO_3) = m(AgNO_3) / m(p-pa) = 10,2 / 170 = 0,06$, или 6%

Критерии оценивания	Баллы
Ответ правильный и полный, содержит все названные элементы	3
Правильно записаны два первых элемента из названных выше	2
Правильно записан один из названных выше элементов	1
Все элементы ответа записаны неверно	0
Максимальный балл	3

Для определения качественного состава неизвестного кристаллического вещества белого цвета к его раствору добавили раствор гидроксида калия. При этом образовался осадок. К другой части раствора исследуемого вещества добавили раствор нитрата бария. Наблюдали образование нерастворимого в кислотах белого осадка.

Известно, что катион металла, который содержится в данном соединении, входит также в состав хлорофилла, а сам металл ранее применялся в фотографии для получения вспышки.

Определите состав и запишите название исходного вещества. Запишите два уравнения реакций, которые были проведены в процессе определения качественного состава неизвестного вещества.

Элементы ответа

(допускаются иные формулировки ответа, не искажающие его смысла)

Определён состав вещества:

1) MgSO₄ – сульфат магния

Составлены два уравнения реакции:

- 2) $MgSO_4 + 2KOH = Mg(OH)_2 + K_2SO_4$
- 3) $MgSO_4 + Ba(NO_3)_2 = Mg(NO_3)_2 + BaSO_4$

Критерии оценивания	Баллы
Ответ правильный и полный, содержит все названные элементы	3
Правильно записаны два элемента из названных выше элементов	2
Правильно записан один из названных выше элементов	1
Все элементы ответа записаны неверно	0
Максимальный балл	3